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Abstract: One income distribution is preferable to another under any increasing and Schur-concave
(S-concave) social welfare function if and only if the generalized Lorenz (GL) curve of the first distri-
bution lies above that of the second. Thus testing for GL dominance of one distribution over another
is of interest. The paper focuses on inference based on grouped data and makes two contributions:
(i) it gives a new formula for the asymptotic variance—covariance matrix of a vector of sample GL
curve ordinates, interpreting it as a method-of-moments estimator, and (ii) it proposes a new test for
multivariate inequality restrictions, of which GL dominance is a special case. The testing problem is
Hy : 8y > 0vs. Hy : 6y # 0, where 8y is the difference between two vectors of ordinates from two
GL curves, or equivalently Hy : @min > 0 vs. Hy : fpin < 0, where fpip is the minimum component
of fy. Given the asymptotic distribution of f,,, the difference between two vectors of ordinates from
two sample GL curves, one can simulate the distribution of én,min, the minimum component of 6,
under the least favorable case in Hy and evaluate the asymptotic p-value. For the Japanese household
income data grouped into deciles, the test accepts the null hypothesis that income distribution in
Japan improved from 1979 to 1994.
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1. INTRODUCTION ' sons. First, Shorrocks [1983] shows that one in-
come distribution is preferable to another under
any increasing and Schur-concave (S-concave)
social welfare function if and only if the GL
curve of the first distribution lies above that of
the second (GL dominance). Second, given the
asymptotic distribution of a vector of sample
GL curve ordinates, we can derive the asymp-
- ; At totic distributions of the associated vector of
ference exist in the literature, few empmcal re- sample Lorenz curve ordinates and of the asso-
searchers follow such procedures. This may be ciated estimators of the Gini coeflicient by the

because those procedures are somewhat compli- delta method; see Beach and Davidson [1983].
cated. ' ’

Among countless empirical works that compare
income or wealth inequality across regions or
over time using estimates of various inequality
measures, few report the standard errors; thus
we can evaluate the sampling errors in few cases.
Although several procedures for statistical in-

This paper makes two contributions to the liter-
ature on statistical inference for GL dominance.
First, we derive the asymptotic distribution of a

Among various criteria for comparing income
(or wealth) distributions, this paper focuses on
the generalized Lorenz (GL) curve for two rea-
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vector of sample GL curve ordinates, interpret-
ing it as a method-of-moments (MM) estima-
tor, and obtain a new formula for its asymptotic
variance—covariance matrix. Beach and David-
son [1983] apply the asymptotic theory of linear
functions of order statistics to obtain a differ-
ent formula. Since the asymptotic theory of
MM estimators is familiar to econometricians
and empirical researchers while that of linear
functions of order statistics is not, our result is
more intuitive. Although the MM estimator we
consider is not differentiable with respect to the
parameter vector, we can apply empirical pro-
cess theory to derive its asymptotic distribution;
see Andrews [1994].

Second, we propose a new test for multivariate
inequality restrictions, of which GL dominance
is a special case. Let #; be a parameter vec-
tor, e.g., the difference between two vectors of
ordinates from two GL curves. Consider testing

HO:HOZO V8. H1:0020.

Let fin be the minimum component of 4.
Then we want to test

Hy : 0min >0 vs.

Let 0, be a consistent and uniformly asymptoti-
cally normal estimator of ;. We use én,min, the
minimum component of én, as the test statis-
tic. Given the asymptotic distribution of 6,,
we can simulate the asymptotic distribution of
én,min under the least favorable case in Hy, i.e.,
6o = 0, and evaluate the asymptotic p-value.

H1 Zomin < 0

An important feature of our method is that it is
feasible even when only grouped data are avail-
able. As an example, we apply our method to
the publicly available grouped data of the Na-
tional Survey of Family Income and Expendi-
ture in Japan. The test accepts the null hypoth-
esis that income distribution in Japan improved
from 1979 to 1994.

2. GENERALIZED LORENZ DOMI-

NANCE

2.1 Generalized Lorenz Curves

Let X be a positive random variable. Let
F : ® — [0,1] be the cumulative distribution
function (cdf) of X. Let for all @ € [0,1], z,
be the 100a percentile of X defined as z, :=
inf{z € Ry : F(z) > a}. Let p:= E(X).
Definition 1 The Lorenz curve of X is L :
[0,1] — [0, 1] such that for all « € [0, 1],
_ E([X < z,]X)

L{a) = —#—
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Definition 2 The generalized Lorenz (GL)
curve of X is GL : [0,1] — [0, p] such that for
al a €[0,1],

GL(a) = E([X < z4]X).

Let Fi(.) and Fy(.) be cdfs. We say that Fi(.)
GL dominates Fy(.) if the GL curve of Fi(.)
lies above that of Fy(.). For continuous ran-
dom variables, GL dominance is equivalent to
the second-order stochastic dominance (SSD);
see Foster and Shorrocks [1988] and Yitzhaki
and Olkin [1991].

2.2 Income Distributions and Social

Welfare
2.2.1 Social welfare functions

Let y € ®" be a distribution of income (or con-
sumption, wealth, etc.) among n households in
an economy. Let W : " — R be a social wel-
fare function (SWF) that depends solely on y.

Definition 3 B € R}*" is bistochastic if the
components in each row and column add up to
1 respectively.

Definition 4 W(.) is Schur-concave (S-
concave) if for all y and for all bistochastic
matrices B,

W(By) > W(y).

S-concave functions are symmetric, i.e., for all y
and for all permutation matrices P, W(Py) =
W(y); see Berge [1963, p. 220]. S-concave
SWFs satisfy the Pigou-Dalton (P-D) princi-
ple of transfers. To be precise, an SWF 1is
strictly S-concave if and only if it satisfies the
P-D principle; see Sen [1997, p. 134]. For ex-
ample, symmetric quasiconcave functions are S-
concave; see Dasgupta et al. [1973, p. 183].

2.2.2 Generalized Lorenz dominance

and social welfare

Assume that y > 0 and that it is ordered. The
GL curve of y is for all a € [0, 1],

[on

]
> v
=1

where [.] rounds up a real number to an integer.
We say that y GL dominates y’ if the GL curve
of y lies above that of 3.

GL(a) := -}l-



Theorem 1 (Shorrocks [1983]) W(y) >

W(y') for all increasing and S-concave W(.)
if and only if y GL dominates y'.

Suppose that W(.) is invariant-to replication of
the population. Then the theorem holds even
when the dimensions of y and ¥’ differ.

3. SAMPLE GENERALIZED LORENZ
CURVES

3.1 Sample Generalized Lorenz Curves

Let (Xi,...,Xn) be a sample of size n. Let
E, : ® — [0,1] be the empirical cdf given the
sample, 1.e., for all z € R,

Fu(a) = %Z[Xi <4

Let X(1),...,X(n) be the order statistics. Let
for all a € {0, 1], £, o be the sample 100« per-
centile, 1.e.,

e = inf{z eR, : Fy(z) > a}
1 i
= 1nf{1:€§R+ : H;[X,-Sz]}_a}
= X(an)-

Let fi, be the sample mean.

Definition 5 The sample GL curve gwen
(X1,...,Xn) is GL, : [0,1] — [0, fin] such that
Jor all @ € [0,1],

GLn(a) := % D [ < 0] X
i=1

3.2 Consistency

Gail and Gastwirth [1978] prove pointwise con-
sistency of the sample GL curves in their proof
of pointwise consistency of the sample Lorenz
curves.

Theorem 2 Suppose that

o X1,...,X, are independent and ident:-
cally distributed (iid),

o E(|X1]) < oo,
e F()) is strictly increasing and C° at z,.

Then

lim GL,(a) = GL(e) a.s.

.—-}00

Proof. See Gail and Gastwirth [1978, p. 788].

The first condition holds for simple random
sampling (SRS) and probability-proportional-
to-size (PPS) sampling with replacement. Given
the third condition, which implies an infinite
population, it also holds for SRS and PPS sam-
pling without replacement, including systematic
sampling with randomized order of the popula-
tion. It does not hold for stratified sampling,
however.

3.3 Asymptotic Distribution

LetO<ay <---<ap=1. Letforj=1,...,k

z; be the 100a; percentile of X. The cor-
responding GL curve ordinates of X are for
i=1,...,k,

GL]' = E([X < Z:J]X)

Let for j = 1,...,k, &,; be the sample
100a; percentile. The corresponding sample

GL curve ordinates given (Xy,...,X,) are for
j=1,... k-1,
. 1 <& A
GL,; = - Z[X, < :L‘n,j]Xi,
i=1
and

GLn’k = % zn: X,‘.
i=1

Beach and Davidson [1983] derive the asymp-
totic joint distribution of sample GL curve or-
dinates using the asymptotic theory of linear
functions of order statistics, noting that for
j=1,...,k,

[a;n]

; 1
GLnj =~ Xy
i=1

Since this asymptotic theory may be unfamiliar
to econometricians and empirical researchers,
we give an alternative derivation, noting that
a vector of sample GL curve ordinates is a
method-of-moments (MM) estimator.

Let

) Tn,1
| Tk-1 i 5:1},16—1
90 - GL]_ ? 071 - GLn,l
GLk éLn’k
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Let © C %3_"_1 be the parameter space. Given
e, letfori=1,...,n,
[ Xi<z]-a

[Xi < zp_1] — oy

m(X;;8) = [Xi < z1]X; — GLy

[Xi < zp—1]X; — GLx_y
Xi— GLg

Assume that X,,...,X,, are iid. Let mpy : ©
R26=1 be such that for all § € O,

mg(f) := E(m(X1;9)).
Then we have a moment restriction such that
(1)

Let m,(.) be the sample analog of mo(.), i.e.,
for all 6 € O,

mo(ag) =0.

n

> m(Xi;0).

i=1

mn(0) : %

Note that for j=1,..., k-1,

lajn]

1< N
~ > IXi < &g
i=1

;N —a;n
U

Hence

it (0a) = 0 (n7). 2)

Thus §,, is an MM estimator of Go. Theorgm 2
essentially gives a sufficient condition for 8, to
be consistent for ;.

Since m(.;.) is not differentiable with respect to
6, we apply empirical process theory to derive
the asymptotic distribution of 6, ; see Andrews
[1994]. Let vn(.) be a (2k — 1) x 1 empirical
process on O given (X,,..., X,,) such that for
all 8 € ©,

va(8) = % S (m(Xi;6) — E(m(X;:0))).
i=1

Theorem 3 Suppose that
° Xl, o
° E(lelz) < 00,

e F(.) is strictly increasing and C' on its
support,

. Xp are ud,

o {vn()}52; s stochastically equicontinu-
ous. .

1234

Then
Vi (6a—6) 54N (0,07 1v ),
where

J
14

mo(6o),
var(m(X1;6q)).

Proof. Available from the authors.

In our case, it turns out that the first two condi-
tions are sufficient for stochastic equicontinuity
of each component of {v,,(.)}5%,; hence the last
condition is unnecessary. (The details are avail-
able from the authors.)

Since the sample GL curve ordinates are the last
k components of 8,, it is now straightforward to
obtain their asymptotic joint distribution. Let

@, GLn 1
: ) GLn :

Theorem 4 Suppose that
e X1,..., X, are ud,
e E (|X1]%) < o0,

e F(.) is strictly increasing and C' on its
support.

Then

GL:

GLk GLn k

v (6L, — GL) 54 N(0, %),
where fori,j =1,...,k such that i < j,
= ziai(l - Otj):ﬂj - .’B,‘(GL,' — GL])
—(GL;‘ - GLiaj):cj
+E (X1 < z:]X?) — GL; GL;.

Ti,j

Proof. Available from the authors.

The form of the asymptotic variance—covariance
matrix is intuitive. The last two terms equal
cov([X, < z;]X1,[X1 < z;)X1), which would
have resulted if we knew the true percentiles.
The first three terms capture the effect of using
the sample percentiles instead of the true ones.

Compare our result with the corresponding re-
sult in Beach and Davidson [1983, Theorem 1].
In our notation, they obtain for 2,7 = 1,...,k
such that 7 < j,

o;[var(X | X < ;)

+(1 — o) (@i — pi)(zj — )
(@i = pa) (5 — mi)l,

where p; := E(X|X < z;). It is tedious but
straightforward to show that the two are equiv-
alent.

o'i Ij



3.4 Covariance Matrix Estimation

We can consistently estimate X by replacing the
parameters associated with F(.) in its expres-
sion with those associated with F,(.), i.e., their
sample analogs. Thus we use ¥, such that for
t,j =1,...,k such that : < j,

Fnij = Eni@i(l—d;)eEn,;
i (C?Ln,,- "y éLn,j>
— (Lni = GLasdy) 8n
+En (X1 < 2:]X2) = GLpiGLy ;.

4. TESTING FOR GENERALIZED
LORENZ DOMINANCE

4.1 Multivariate One-Sided Tests and
Multivariate Inequality Tests

Let GL; and GL be vectors of GL curve ordi-
nates of two distributions. Let 8y := GL;— GL,.
Then g > 0 if and only if the first distribution
GL dominates the second. Goldberger [1992]
distinguishes the following two formulations for
testing multivariate inequality hypotheses.

Definition 6 A multivariate one-sided testing
problem is

Hy:00=0 ws. Hy:00>0.

Definition 7 A multivariate inequality testing
problem is

Ho:0>0 ws. Hy:00%0.

In general, the first formulation is better for as-
serting 6 > 0. A drawback of this formulation,
however, is that neither hypothesis covers cross-
ing GL curves. This is a serious drawback in our
context, because it is quite possible that two GL
curves cross and hence the two distributions are
incomparable. Thus we choose the second for-
mulation. Note that now we assert GL domi-
nance by accepting the null hypothesis. Such
a conclusion is weak, because the power of the
test is not under our direct control.

4.2 Test Statistic

Let éLl,nl ‘and G’.Lzyn2 be vectors of sample
GL curve ordinates of two independent random
samples, of sizes n; and ny respectively, from
two distributions. By Theorem 4,

\/E(G'Ll,nl—GLl) 4 N(0,Z1),
\/n‘z(c_?Lz,nz—GLz) S N(O, ).

Let n := ny + ng. Assume that lim, 0 n1/n =
t. Then

\/ﬁ(éLl,nl—GLl) —a N(0,1%1),

\/ﬁ(G“Lz,nz—GLz) S N(O, (1 - t)5,).

Let 6, := GALl,n1 - G;Lzynz. Since éLLnl and
(?Lz'n2 are independent,

Vi (B = 80) —a N(0, 151 + (1 - )52).

Thus, given 1, X4, and ¢, we know the asymp-
totic distribution of én under the least favorable
case in Hg, 1.e., 85 = 0.

Let 0min be the minimum component of 8g.
Then we can write the multivariate inequality
testing problem as

Hy:0pin >0 vs. Hp:0min <0.

Thus it is natural to use én,min, the minimum
component of 6, as the test statistic.

Let F(.) be the cdf of the minimum component
of X ~N(0,tZ; + (1 —t)X3). Then under the
least favorable case in Hy, i.e., #g =0,

\/ﬁén,min —>d F()

It is difficult to derive F(.) analytically. Given
i, X9, and t, however, we can draw from
N(0,tZ; + (1 —t)X;) and simulate F(.); thus we
can obtain simulated critical values. In practice,
we replace X1, Xy, and ¢ with their consistent
estimators, and compute the asymptotic p-value
by simulation. ‘

5. APPLICATION: INCOME DISTRI-
BUTION IN JAPAN

5.1 Data

According to the National Survey of Family
Income and Expenditure, income inequality in
Japan measured by the sample Lorenz curve in-
creased from 1979 to 1994, while income distri-
bution measured by the sample GL curve im-
proved during the same period (Table 1), i.e.,
increase in the average real income was sufficient
to compensate increase in inequality. The argu-
ment based only on the point estimates, how-
ever, is incomplete.

Consider testing, for example,

Hy : GLigga > GLyg7g
vs. Hy: GLygeq ¥ GLigre,
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where GLig7g and GLjggs4 are vectors of GL
curve ordinates in 1979 and 1994 respectively.
We apply the above test to this problem.

Although micro data of the National Survey
of Family Income and Expenditure are not
publicly available, publicly available grouped
data contain sufficient information for our pur-
pose. For each income decile group, they re-
port the sample mean and the sample coefficient
of variation of the annual income, from which
we can calculate the sample second moment.
Thus we can estimate the asymptotic variance-
covariance matrix of the sample GL curve ordi-
nates.

Table 1. The Sample GL Coordinates for the
Japanese Household Real Incomes.

Decile 1979 1984 1989 1994
i 227 226 258 256
569 572 642 651
964 986 1,103 1,134
1,430 1456 1,626 1,684
1,940 1,987 2,232 2,330
2,507 2,576 2,904 3,050
3,135 3,247 3,680 3,884
3,879 4,027 4,567 4,850
9 4,739 4958 5618 6,004
10 6,016 6322 7216 7,767

Note: Thousand 1995 yen deflated by the Consumer
Price Index (CPI).

00 ~J O U i O N

Source: The authors’ calculation from the National Sur-

vey of Family Income and Expenditure.

5.2 Testing Results

The test statistic is the minimum value among
the components of GL1994 - GL1979, where
GLig7s and éL1994 are vectors of the sample
GL curve ordinates in 1979 and 1994 respec-
tively. We see from Table 1 that it is 29. Given
the asymptotic distribution of GLyggs — GL1g79,
we can draw from this distribution and simu-
late the asymptotic distribution of the minimum
component. In practice, it suffices to evaluate
the asymptotic p-value rather than tabulating
the distribution for each case.

Table 2 summarizes the results. For the com-
parison between 1979 and 1994, the p-value is
1.00; thus we accept Hy, i.e., income distribu-
tion in Japan improved from 1979 to 1994. Un-
der the least favorable case in Hg, the test statis-
tic is the minimum value among the multivari-
ate normal distribution with mean 0. Unless
all the components have perfect positive corre-
lation, it has a distribution skewed to the left,
i.e., it tends to be negative even under Hy. Thus

positive value of the test statistic strongly sup-
ports Hy.

Table 2. Testing Results.

Test Statistic  Asy. p-value

1979-1984 ~0.35 0.74
1979-1989 31.16 : 1.00
1979-1994 29.85 1.00
1984-1989 31.51 1.00
1984-1994 30.20 1.00
1989-1994 -1.31 0.71

Note: The asymptotic p-value is based on 100,000 ran-
dom draws from the asymptotic distribution of the test

statistic under the least favorable case in Ho.
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